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1. THE ETYMOLOGY OF THE WORD ERGODIC 
A N D  THE HEAT T H E O R E M S  

T r y i n g  to  f ind the  m e a n i n g  of  the  w o r d  e rgodic ,  o n e  is led to a n  1884 p a p e r  

by  B o l t z m a n n .  c6~' 2 T h i s  p a p e r  is s e l d o m  q u o t e d  3 a n d  n o  Eng l i sh  t r a n s l a -  

t i on  is ava i l ab le ,  b u t  I t h i n k  t h a t  i t  is o n e  of  B o l t z m a n n ' s  m o s t  i n t e r e s t i n g  

pape r s :  it is a p r e c u r s o r  of  the  w o r k  of  G i b b s  t:~ o n  e n s e m b l e s ,  c o n t a i n i n g  

This is an expanded and revised version of a paper read at a conference celebrating the 150th 
anniversary of the birth of Boltzmann, Vienna, 24 February 1994. This paper is archived in 
mp_arc@math.utexas.edu, #94-66; updated copies (in Postscript) can also be obtained by 
sending a request to the author by E-mail. 

t Dipartimento di Fisica, Universit~t di Roma, 00185 Rome, Italy. E-mail 40221::gallavotti. 
2 See the footnote by S. Brush in his edition ~9~ of the Lectures on Gas Theory, on p. 297 (w 

here Boltzmann's paper is quoted as the first place where the word is introduced, although 
the etymology is taken from the Ehrenfests' paper, which is incorrect on this point: see 
ref. 19, note 93, p. 89 (where also the first appearance of the word is incorrectly dated and 
quoted ). 

31 found only Brush's reference cited here in footnote 2 and a partial account in ref. 11, pp. 
242 and 368, prior to my own etymological discussion which appeared in print in ref. 21 
after several years of lectures on the subject. My discussion was repeated in refs. 22 and 23. 
More recently the paper has been appropriately quoted in ref. 38, unaware of my analysis. 
The paper was discussed also in ref. 37; see footnote 11 below. 
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it almost entirely ]-if one recalls that the equivalence of the canonical 
and microcanonical ensembles was already established (elsewhere) by 
Boltzmann himself, at least in the free case ~, zj], and I will try to motivate 
such a statement. 

The paper stems from the fundamental, not too well-known work of 
Helmholtz, c25"~-6~ who noted that monocyclic systems 4 could be used to 
provide models of thermodynamics in a sense that Boltzmann undertakes 
to extend to a major generalization. 

After an introduction, whose relative obscurity has been probably 
responsible for the little attention this paper has received, Boltzmann intro- 
duces the notion of "stationary" probability distribution on the phase space 
of N interacting particles enclosed in a vessel with volume V. He calls 
a family g of such probabilities a monode, generalizing an "analogous" 
concept of monocyclic systems) 

In fact the orbits of a monocyclic system can be regarded as endowed 
with a probability distribution giving an arc length a probability propor- 
tional to the time spent on it by the motion: hence their family forms a 
family of stationary probability distributions. 

Etymologically this undoubtedly 6 means a family of stationary dis- 
tributions with a "unique nature" (each consisting of systems with a 
"unique nature," differing only by the initial conditions), from p6vo( and 
e' z60( with a probable reference to Plato and Leibnitz. 7 

Then the following question is posed. Given an element/.z of a monode 
g, also called a monode by Boltzmann, we can compute the average values 
of various observables, e.g., average kinetic energy, average total energy, 
average momentum transfer per unit time and unit surface in the collisions 

4 This is what we call today a system whose phase space contains only periodic orbits, or 
cycles: i.e., essentially a one-dimensional conservative system. 

s In fact Boltzmann first calls a monode just a single stationary distribution regarded as an 
ensemble. But sometimes he later implicitly, or explicitly, thinks of a monode as a collection 
of stationary distributions parametrized by some parameters: the distinction is always very 
clear from the context. Therefore, for simplicity, I take here the liberty of calling a "monocle" 
a collection of stationary distributions, and the individual elements of the collection will be 
called "elements of the monode." The etymology that follows, however, is more appropriate 
for the elements of the monodes, as they are thought of as consisting of many copies of the 
same system in different configurations. By reading Boltzmann's analysis one can get the 
impression (see p. 132 of ref. 6) that the word monode had been already introduced by 
Maxwell in ref. 36; however, the reference to Maxwell is probably meant to refer to the 
notion of stationarity rather than to the word monode, which does not seem to appear in 
ref. 36. 

6 Of course one can doubt (this as well as many other things). 
7 The concept appears, in fact, in some of Plato's dialogues; see the entry iwvoet~#( ("one in 

kind") in ref. 35. 



Ergodicity 1573 

with the vessel walls, average volume occupied, and density, denoted, 
respectively, 

T = I  N (1.1) N (K) , , ,  U =  ( K +  ~ ) 0 ,  p, V, p = f f  

where �9 denotes the potential interaction energy and K the total kinetic 
energy. We then imagine varying /~ in the monode 8 by an infinitesimal 
amount  (this means changing any of the parameters which determine the 
element ). 

Quest ion.  Is it true that the corresponding variations dU and dV 
are such that 

dU+p dV 
is an exact differential dS? (1.2) 

T 

In other words, is it true that the above quantities, defined in purely 
mechanical terms, satisfy the same relation that would hold between them 
if, for some thermodynamic system, they were the thermodynamic quan- 
tities bearing the same name, with the further identification of  the average 
kinetic energy with the absolute temperature? 8 If so, the monode  would 
provide a "'mechanical model of thermodynamics" extending, by far, the 
early examples of Helmholtz on monocyclic systems. 

Thus Boltzmann is led to the following definition: 

D e f i n i t i o n .  A monode  ~ is called an orthode if the property 
described by (1.2) holds. 

Undoubtedly  the etymology of "or thode" is dpO6( and er6o(, i.e., 
"right nature." 

I find it almost unbelievable that such a deep definition has not been 
taken up by the subsequent literature. This is more so as Boltzmann, in the 
same paper, proceeds to discuss "examples" of mechanical models of 
thermodynamics,  i.e., examples of orthodic monodes. 

It has certainly not escaped the reader's attention that an orthodic 
monode  (or Orthode) is what we call today an equilibrium ensemble. The 

s That the temperature should be identified with the average kinetic energy per particle was 
quite well established (for free gases) since the paper by Clausius ct3~ and the paper on the 
equipartition of kinetic energy by Boltzmann t2~ (in the interacting cases); see the discussion 
of it in Maxwelrs last scientific work. (36) The latter paper is also very interesting, as Maxwell 
asks there whether there are other stationary distributions on the energy surface, and tries 
to answer the question by putting forward the ergodic hypothesis. 
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above concept  is far more ambi t ious  than the ones involved in the previous 
p roof  of the heat  theoem in ref. 3. And the above  or thodic i ty  concept  is still 
a t t r ibuted  to Gibbs ;  see, however,  ref. 11, p. 242, where it is recognized that  
ref. 6 amounts  to a general theory  of ensembles (curiously a t t r ibut ing  a 
par t icular  impor tance  from the point  of view of generali ty to the later  
contr ibut ion  of Gibbs  on the grand canonical  ensemble).  

The examples  of or thodes  discussed by Bol tzmann in his paper  are the 
holode and the ergode, which are two ensembles whose elements are 
parametr ized  with two parameters  fl, N or  U, N, respectively. Their  
elements are 

#a.u(dP dq)  = dpl  " ' -dp, ,  dql  "'" dq ,  -a~K+*~ e (1.3) 
const  

and 

#v.N(dp dq) - d p l  . - .  dp,, dq~ ...dq,, 6(K(p) + qS(q)_ U) (1.4) 
const  

Boltzmann proves that the above two ensembles are both orthodes! thus 
establishing that  the canonical  and the microcanonical  ensembles (using 
our  modern  te rminology)  are equi l ibr ium ensembles and provide  mechani-  
cal models  of thermodynamics .  9 

Bol tzmann 's  p roof  makes use of the auxil iary (with respect to the 
above  definit ion) not ion of heat transfer: in the canonical  case it yields 
exactly the desired result; in the microcanonical  case it is also very simple, 
but  somehow based on a different not ion of heat  transfer. An analysis of 
the mat te r  easily shows r that  the correct  ~~ s ta tement  becomes exact only 
in the limit as N, U ~  oo, keeping of course U/V, N/V constant ,  i.e., in 
what  we call today  the " the rmodynamic  limit." 

Undoub ted ly  the word holode has the e tymological  origin of 62o~ and 
e'{6o~, while ergode is a shor thand  for e rgomonode  and it has the 
e tymological  root  of gpyov and e'{6o~, meaning a "monode  with given 

9 He also studies other ensembles; for instance, in a system in which angular momentum is 
conserved, e.g., a gas in a spherical container, he considers the stationary distributions with 
fixed energy and fixed total angular momentum L. Such monodes are called by Boltzmann 
planodes (from the "area law"); and he remarks that in general they are not orthodic (in 
fact one needs the extra condition that L = 0). 

10 There is a problem only if one insists in defining in the same way the notion of heat transfer 
in the two cases: this is a problem that Boltzmann does not even mention, possibly because 
he saw as obvious that the two notions would become equivalent in the thermodynamic 
limit. 
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energy.,,t2L~. ~t The word holode is probably a shorthand for holomonode, 
meaning a "global monode" (perhaps a monode involving states with 
arbitrary energy, e.g., spread over the whole phase space). 

This is not what is usually believed to be the etymology of ergode: the 
usual belief comes from the Ehrenfests' statement that the etymology is 
~pyov and 666~, with the meaning of "unique path on the surface of 
constant energy"; see ref. 19, note 93. This etymology has been taken up 
universally and has been attached to the subject of ergodic theory, which 
is instead a theory dealing with time evolution properties. 

2. THE ERGODIC HYPOTHESIS,  CONTINUOUS AND 
DISCRETE PHASE SPACE 

The etymological error of the Ehrenfests could be just an amusing 
fact: but it had a rather deep negative influence in the development of 
20th century physics. They present their etymology in connection with the 
discussion (amounting to a de facto rejection) of the ergodic hypothesis of 
Boltzmann. In fact, Boltzmann had come to the ergodic hypothesis in his 
attempts to justify a priori that the ergode, as a model of thermodynamics, 
had to produce the thermodynamics of a system with the given 
Hamiltonian function (and not just a model). 

Boltzmann had argued that the trajectory of any initial datum 
evolves on the surface of constant energy, visiting all phase space points 
and spending equal fractions of time in regions of equal Liouville 
measure. 

The Ehrenfests criticize such a viewpoint on surprisingly abstract 
mathematical grounds: basically they say that one can attach to each dif- 
ferent trajectory a different label, say a real number, thus constructing a 
function on phase space constant on trajectories. Such a function would of 
course have to have the same value on points on the same trajectory (i.e., 
it would be a constant of motion). This is stated in note 74, p. 86, where 
the number of different paths is even "counted," and referred to in note 94, 
p. 89. Therefore, they conclude, it is impossible that there is a single path 
on the surface of constant energy, i.e., the ergodic hypothesis is inconsistent 

1~ The word "ergode" appears for the first time on p. 132 of ref. 6, but this must be a curious 
misprint, as the concept is really introduced on p. 134. On p. 132 the author probably 
meant to say "holode" instead: this has been correctly remarked in ref. 38. See also below, 
footnote 15. The above etymology was proposed probably for the first time by myself in 
various lectures in Rome, and was included in the first section of ref. 21. A year later a 
reference to the same new etymology appeared: -'s' 371 
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(except for the monocycl ic  systems, for which it tr ivially holds).  ~2 Having 
disposed of the ergodic hypothesis  of  Bol tzmann,  the Ehrenfests proceed to 
formulate a new hypothesis,  the ra ther  obscure (and somewhat  vague, as 
no ment ion is made of the frequency of visits to regions in phase space)  
"quasiergodic hypothesis";  see notes 98 and 99, p. 90, in ref. 19: it led 
physicists away from the subject and it inspired mathemat ic ians  to find the 
appropr ia t e  definition giving bir th to ergodic theory and to its first non- 
trivial results. 

The modern  not ion of ergodici ty is not  the quasiergodici ty  of the 
Ehrenfests. It is simply based on the remark  that  the Ehrenfests had defined 
a nontr ivial  constant  of mot ion  very abstract ly,  by using the axiom of choice. 
In fact, from the definition, consist ing in a t taching a different number ,  
or even 6 N -  2 different numbers,  to each distinct trajectory, there is in prin- 
ciple no way to construct a table of the values of the function defined in 
order  to distinguish the different trajectories. In a system ergodic in the 
modern sense the Ehrenfests' construction would lead to a nonmeasurable  
function; and to a physicist endowed with common sense, such a fimction, 
which in principle cannot be tabulated, should appear as nonexistent, or as non- 
h2teresting. Thus the mot ion on the energy surface is called ergodic if there 
are no measurable constants of motion:  here measurable is a mathematical  
not ion which essentially states the possibility of a tabula t ion of the function. 

It is surprising that  a generat ion of  physicists could be influenced (in 
believing that  the ergodic hypothesis  of Bol tzmann had to be abandoned  as 
a too naive viewpoint)  by an argument  of such an exquisitely abs t rac t  
nature,  resting on the propert ies  of a function that  could not  be tabula ted  
(and not  even defined if one did not  accept the sinister axiom of choice). ~3 
Therefore it is perhaps worth trying to unders tand what  Bol tzmann could 
have possibly have meant  when he formulated the ergodic hypothesis.  Here 
one cannot  fully rely on published work, as the quest ion was never really 
directly addressed by Bol tzmann in a critical fashion (he might  have 
thought ,  rightly, that  what  he was saying was clear enough).  The following 
analysis is an e labora t ion  of refs. 21 and 22: in some points  it gets quite 
close to ref. 38. It will not  escape the reader  that  ref. 38 has a somewhat  

.2 The abstract mathematical nature of this argument (see also below for a critique) was 
apparently remarked only by a mathematician (see ref. 38, p. 86), although a great one 
(BoreI, 1914), but it escaped many physicists. It is worrying to note how seriously the 
mathematicians took the ergodic hypothesis and how easily they disposed of it, taking for 
granted that the Ehhenfests' formulation was the original formulation by Boltzmann and 
Maxwell (see ref. 11, p. 383). 

~3 We recall, as it is quite an irony, the coincidence that the recognition and the development 
of the axiom of choice was due essentially to the same Zermelo who was one of the 
strongest opponents of Boltzmann's ideas on irreversibility; see also ref. 43. 
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different point of view on several key issues, although we seem to share the 
main thesis that ref. 19 is responsible for most of the persisting misunder- 
standings on Boltzmann's work, including the exclusive attribution to 
Gibbs of Boltzmann's ideas on ensembles, so clearly elaborated in ref. 6. 
This is so even though, by carefully reading the literature, it is possible 
to realize that many were aware of the connection of Gibbs's work with 
Boltzmann's; see, for instance, ref. 11, p. 242, and the translator's (Brush') 
introduction to ref. 9, p. 12. 

My point of view is that Boltzmann always conceived the phase space 
as a discrete space, divided into small cells; see ref. 4, p. 346. He always 
stressed that the continuum must be understood as a limit; see ref. 11, 
p. 371, and refs. 30--32 and 15. The book of Dugas 1~5~ is particularly 
illuminating also in this respect (see, for instance, Chapter 1 and the quota- 
tions of Boltzmann presented there, where he appears to identify the 
discrete viewpoint with the atomistic conceptions). 

Although Boltzmann seems to have been sometimes quite apologetic 
about such a viewpoint (even calling it a "mathematical fiction"; ref. 10, 
p. 18, from ref. 4; see also ref. 38, p. 75), he took advantage of it to a point 
that one can say that most of his arguments are based on a discrete con- 
ception of phase space, followed at the end by a passage to the continuum 
limit. It should be understood, however, that the discretization that 
Boltzmann had in mind is by no means to be identified with the later 
concept of coarse graining: see Section 4, where a modern version of 
Boltzmann's discretization is considered and where a distinction has to be 
made between cells and volume elements; see also refs. 38 and 23. 

It is easier for us, by now used to numerical simulations, to grasp the 
meaning of a cell: in the numerical simulations a cell is nothing but an 
element of the discrete set of points in phase space, each represented within 
computer precision (which is finite). One should always discuss how much 
the apparently harmless discreteness of the phase space affects the results. 
This is, however, almost never attempted: see ref. 23 for an attempt. 
A volume element has, instead, a size much larger than the machine resolu- 
tion, so that it appears as a continuum (for some purposes). 

Hence one can say that an essential characteristics of Boltzmann's 
thought is to have regarded a system of N atoms, or molecules, as 
described by "a cell of dimension 6x and 6p in position and momentum 
coordinates. He always proceeded by regarding such quantities as very 
small, avoiding to enter into the analysis of their size, but every time this 
had some importance he seems to have regarded them as positive quantities. 

A proof of this is when he refutes Zermelo's paradoxes by counting the 
number of cells of the energy surface of 1 cm 3 of normal air, ~v) a feat that 
can only be achieved if one considers the phase space as discrete. 
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In particular this point of view must have been taken when he for- 
mulated the ergodic hypothesis: in fact, conceiving the energy surface as 
discrete makes it possible to assume that the motion on it is "ergodic," i.e., 
it visits all the phase space points, compatible with the given energy (and 
possibly with other "trivial" constants of  mot ion)  behaving as a monocyclic 
system (as all the motions are necessarily periodic). 

The passage to the cont inuum limit, which seems to have never been 
made by Boltzmann, of such an assumption is of  course extremely delicate, 
and it does not lead necessarily to the interpretation given by the 
Ehrenfests. It can easily lead to other interpretations, among  which is the 
modern notion of ergodicity. But it should not be attempted here, as 
Boltzmann himself did not at tempt it. 

In general, one can hardly conceive that studying the cont inuum 
problem could lead to really new information that cannot  be obtained by 
taking a discrete viewpoint. Of  course, some problems might be easier if 
studied in the continuumt42): the few results on ergodicity of physical 
systems do in fact rely explicitly on cont inuum models. However, I inter- 
pret such results rather as illustrations of the complex nature of the discrete 
model: for instance, the ergodicity theory of a system like a billiard is very 
enlightening, as it allows us to get some ideas on the question of whether 
there exist other ergodic distributions (in the sense of ergodic theory) on 
the energy surface, and which is their meaning/12) 

And the theory of the cont inuum models has been essential in providing 
new insights in the description of nonequilibrium phenomena. 14t' 14) 

Finally the fruitfulness of the discrete models can be even more 
appreciated if one notes that they have been the origin of the quantum 
theory of radiation: it even can be maintained that already Boltzmann had 
obtained the Bose-Einstein statistics. ~~ 

The latter is a somewhat strong interpretation of the 1877 paper/s~ 
The most  attentive readers of Boltzmann have, in fact, noted that in this 
discretizations he uses, eventually, the continuum limit as a device to 
expedite the computations,  manifestly not remarking that this would lead 
to important  differences in some extreme cases. In fact he does not discuss 
the two main "errors" that one commits in regarding a cont inuum formula- 
tion as an approximation (based on replacing integrals with sums): they 
were exploited for the first time by Planck, much later, 14 with respect to a 
discrete one. 

14 And which amount to the identification of the Maxwell-Boltzmann statistics and the 
Bose-Einstein statistics and to neglecting the variation of physically relevant quantities 
over the cells; see the lucid analysis in ref. 29, p. 60; for a technical discussion see refs. 23 
and 24. 
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The above "oversight" might simply be a proof  that Bol tzmann never 
took the discretization viewpoint to its extreme consequences, among  
which is the one that  the equilibrium ensembles are no longer orthodic in 
the sense of Bol tzmann 123'24) (al though they still provide a model  for 
thermodynamics  provided the temperature  is no longer identified with 
the average kinetic energy, a remark that very likely was not made by 
Bol tzmann in spite of his consideration and interest in the possibility of  
finding other integrating factors for the heat transfer dQ; see the footnote 
on p. 152 in ref. 6. ~5 The necessity of understanding this "oversight" has 
been particularly clearly advocated by Kuhn,  referring to Bol tzmann's  
"little studied views about  the relation between the cont inuum and the 
discrete"; see ref. 29, for instance. 

3. THE  ERGODIC  H Y P O T H E S I S  A N D  IRREVERSIBIL ITY 

The reaction of the scientific world to the ergodic hypothesis was, "on 
the average," a violently negative one, also as it was intended to provide 
further justification for the irreversibility predicted by the Bol tzmann 
equation, derived earlier. 

The great  majori ty of scientists saw absurd and paradoxical  conse- 
quences of the hypothesis, without apparent ly  giving any importance to the 
"unbelievable" fact that  on the basis of a maximal  simplicity assumption 
(i.e., only one cycle on the energy surface) Bol tzmann was obtaining not 
only the possibility of explaining mechanically the classical equilibrium 
thermodynamics ,  but also of explaining it in a quanti tat ive way. It allowed 
for the first time the theoretical calculation of the equations of state of 
many  substances (at least in principle) such as imperfect gases and even 
other fluids and solids. 

The success of the highly symbolic but very suggestive formula of 
Bol tzmann (ref. 19, p. 25) 

dt ads  
lim (3.1) 

r ~  T -  S tr ds 

(where tr is the microcanonical  density on the energy surface, whose area 
element is ds) in the calculation of the equilibrium properties of mat ter  
quickly led physicists to accept it in the "minimal  interpretation." Such an 
interpretat ion demanded that  the r.h.s, be used to compute  the equilibrium 
averages and the 1.h.s. ignored, together with the atomic hypothesis. This is 

ts I have profited, in checking my understanding of the original paper as partially exposed in 
ref. 21, from an English translation that Dr. J. Renn kindly provided while my student in 
Rome (1984). I was able to cite this footnote in ref. 6 and insert a few new remarks in the 
present paper because of his translation (unfortunately still unpublished). 
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regarded as a law of  nature, in spite of the persistent skepticism (or deep 
doubts) on its deducibility from the laws of mechanics, a point of view 
usually attributed to Gibbs, referring to ref. 20, and which is still around, 
although with, since the mid-fifties, a slow but inexorable inversion of this 
tendency. 

Immediately after the first critiques, Boltzmann elaborated answers 
often very clear and simple by our modern understanding: but they were 
very frequently ill understood not only by the opponents of Boltzmann 
and their epigones, but also by those who were closest to him. The 
above-quoted critique of the ergodic hypothesis by the Ehrenfests is an 
example. 

Another example is the recurrence paradox, based on the simple 
theorem of Poincar6. Boltzmann was finally led to the calculation of 
the number of cells on the energy surface, (7) thus to a superastronomical 
estimate of the recurrence time, which, nevertheless, did not seem to 
impress many. 

It is also clear that Boltzmann himself became aware of the fact that, 
after all, the ergodic hypothesis might have been unnecessarily strong and 
perhaps even useless to explain the approach to equilibrium in physical 
systems. The latter in fact reach equilibrium normally within times which 
are microscopic times, not at all comparable with the recurrence time. He 
asserted repeatedly that the (very few) macroscopic observables of interest 
had essentially the same value in most of the energy surface, and the time 
spent in the "anomalous phase space cells" is therefore extremely small: a 
quantitative understanding of this is provided by the Boltzmann equation. 
This remark also frees (3.1) from the ergodic hypothesis: it might well be 
that the r.h.s, can be used to evaluate the average values in equilibrium 
of the few observables which are of interest, although there might be 
observables (i.e., functions on phase space) for which (3.1) fails. 

It is well known that Boltzmann went quite far in this direction, by 
providing a concrete method to estimate the true times of approach to 
equilibrium: the Boltzmann equation (developed well before the 1880s). 

Finally it is worth noting that the methods used by Boltzmann in 
deriving the theory of ensembles and the ergodic hypothesis are quite 
modern and in fact are most suited to illustrate the new developments on 
nonequilibrium theory, as I shall try to prove in the next section. 

4. N O N E Q U I L I B R I U M .  RUELLE'S PRINCIPLE.  O U T L O O K  

I cannot resist the temptation of at least mentioning some recent new 
developments which look exciting and very likely will be important 
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progress in the field. 16 Equation (3.1), in its minimal interpretation of 
providing, via the r.h.s. (i.e., the microcanonical distribution), the law for 
the evaluation of the "relevant" macroscopic observables, starting from 
the energy function of the system, "solves" the problem of equilibrium 
theory--completely, as far as we know (in classical physics). 

Is a similar theory possible for systems in nonequilibrium, but in a 
stationary state? What (if anything) replaces the microcanonical distribu- 
tion in such cases? As an example of "cases" we mean the motion of a gas 
of particles subject to a constant force ("electric field") setting them in 
motion, while the energy produced is dissipated into a reservoir. 

The answer seems positive, at least in some cases. The problem lies in 
the fact that the motion of such systems is dissipative, hence the volume 
element of the energy surface is not conserved even in the simple case 
in which the thermostat is such that it keeps the total energy of the 
system constant (as I shall suppose, to simplify the discussion), i.e., the 
microcanonical distribution cannot describe the stationary state. Taking 
the continuum viewpoint, we can imagine that the motion is essentially 
concentrated, after a transient time, on a set A which has zero measure 
with respect to the Liouville measure on the energy surface. 

To avoid giving the impression that the discussion is abstract (hence 
possibly empty), let me define explicitly one model, among many, that one 
should have in mind. We consider a system of N particles interacting with 
a potential energy q~ and subject to an external constant force field E (e.g., 
electric field): 

1 
~1~= n~ p~ , p i=  - -  ~q qb -+- E --  c~(p)pi (4.1) 

where E is the external constant force and a is defined so that the energy 
ZN=~p~/2m+q5 is constant (i.e., c ~ = E . Z p i / ~ p ~ ) .  The term api is a 
model of a thermostat (this should be called a Gaussian thermostat, as it is 
related to Gauss'  principle of "least constraint. ''('4) Here �9 can be a short- 
range pair potential plus an external potential: we think of an external 
potential such that no particle trajectory can avoid interacting with it 
("finite horizon"). The system is considered enclosed in a box with periodic 
boundary conditions: hence we expect that a current parallel to E will be 
established and the system will reach a stationary state. The volume in 
phase space contracts at a rate ( 3 N - 1 ) ~  (which is positive, on the 
average): hence the motion will asymptotically develop on some "attractor" 

161 like to think that Boltzmann is listening to the celebration of his birthday: he would 
certainly be bored by hearing a (presumably poor) exposition dealing only with things that 
he knew far better. 

822/78/5-6-25 
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which is a set of zero Liouville measure and which we wish to identify with 
an unstable manifold of the mot ion  (e.g., the unstable  manifold of a fixed 
point  or  of a per iodic  orbi t )  on which the trajectories  separa te  at an 
exponent ial  rate. 

Wha t  follows will lead to a unified theory of equi l ibr ium as well as 
nonequi l ibr ium for system (4.1). 

The discrete viewpoint  is also possible: the energy surface consists of 
cells which are relevant (for the study of the asymptot ic  proper t ies)  forming 
a set A in phase space, and of cells which are irrelevant.  The mot ion  can 
be regarded to develop on the set of cells which are in A, which is strictly 
smaller than the set of all the cells: in fact far smaller  (and in the 
cont inuum limit the fraction of cells in .4 approaches  0). 

Since the volume of the cells is not  conserved, care must  be exercised 
in regarding the dynamics  as a pe rmuta t ion  of the cells of A. This is in fact 
also true in the equi l ibr ium case because, even if the cells do not  change in 
volume, they are deformed,  being squeezed in some directions and dilated 
in others. In equi l ibr ium it is possible to conceive si tuat ions in which the 
deformat ion can be neglected (this leads to restrict ions on the region of 
temperature  and density in which the considera t ion  of the dynamics  as a 
cell pe rmuta t ion  is acceptable;  a discussion which we have not  begun above  
and which we avoid here as well; see ref. 23 for a quant i ta t ive  analysis).  
A similar analysis can be carried in the present case. 

Basically one has to think that  the system is observed at t ime intervals 
To which are not  too small (so that  something really happens)  and not  too 
large (so that  the cell's deformat ions  can be either neglected or  control led,  
at least for a large major i ty  of cells): see ref. 23 for a quant i ta t ive  analysis 
of what  this means in the equi l ibr ium cases and of when this might  lead to 
inconsistencies. Let S~0 denote  the t ransformat ion of .4 describing the 
dynamics on .4 over the time Zo. By making  the cells small enough we can 
take Zo larger. 

We shall imagine the set .4 as a set of cells a round  a surface in phase 
space of dimension roughly 6N/2 at least if the external  force is small  (so 
that  the friction ct, i.e., the phase space volume contract ion,  is also small):  
in fact, if there is no external  force the dimension of A should be 
1 + ( 6 N - 2 ) / 2 . 1 7  The surface .4 can fold itself on the energy surface filling 

J7 Because there are as many contracting directions as expanding ones (the volume being 
conserved in the 6N-dimensional phase space), and there are two "neutral" directions (the 
direction orthogonal to the energy surface and the direction of the phase space motion), one 
of which lies on the energy surface (the direction of motion). ~6' ~7.44~ Of course the existence 
of other conserved quantities, as in (4.1) when the linear momentum is conserved (e.g., in 
the trivial case of no external potential), can affect this calculation: in (4.1), when E = 0, this 
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it up complete ly  (in the E = 0  case) or  not  (in the general case). ~8 We can 
assume the following extension of the ergodic hypothesis:  on A the 
dynamics is a one-cycle permutation of the cells. 

Then the mot ion  of a r andomly  chosen initial da tum,  randomly  with 
respect to a d is t r ibut ion  with some density on the energy surface, will 
s imply consist in a fast approach  to the surface A; at the same time da ta  
which are on A itself and close to each other  will separate  from each other  
at some exponent ia l  rate, because on A all the directions are dilated,  by 
definition. To fix the ideas we take the initial da ta  with constant  density 
in some little ball U. If we assume, for simplicity, the above ergodic 
hypothesis,  the layer is, over times mult iples of the recurrence time, a set 
of cells each visited with equal frequency. However,  the surface A will, in 
general,  not  be a monolayer  of cells, but  it will have a large "width," i.e., 
a (macroscopic)  area  element da will contain  many  (microscopic)  cells. 19 

The number  of cells per  unit area can be deduced by remarking  that  
after a time z = Mzo the density of cells a round  x ~ A, initially dis t r ibuted 
with constant  densi ty in the region U (where the initial da ta  are randomly  
chosen),  has to be p ropor t iona l  to the inverse of the area expansion rate 
of the t ransformat ion  S~. This means that  we expect that  the dis t r ibut ion 
on A which has to be used to compute  the s ta t ionary  averages is described 
by a suitable densi ty with respect to the area element on A. 

With  this intuit ive picture in mind, 14~' ~8~ we see that  a little ball  U in 
phase space evolves, becoming a thin layer a round  A: the density of the 
layer, after a large time T, is p ropor t iona l  to the expansion rate of the 
surface area on A under  the t ransformat ion  Sr  that  generates the time 
evolut ion over the given time. 

In the case of no external  forces one has that  the surface A folds itself 
on the energy surface coming back to a given phase space volume element 
V 0 (not  to be confused with a ceil, which has to be thought  of as much 
smaller);  just  enough times, and with enough volume around,  so that  the 
fraction of the volume initially in U and falling in the volume element V 0 
is p ropor t iona l  to Vo itself (this is consistent  because of the equal i ty  of the 

brings down the dimension to 1 + (6N-8)/2. Furthermore, we are assuming here that there 
are no "neutral" directions other than the ones possibly provided by the obvious conserva- 
tion laws: i.e., that our system has strong instability properties (hence this does not directly 
apply to the free gas, for instance). 

18 

19 This can perhaps be clarified if one thinks of the numerical experiments in which the 
computer representatives of the phase space points are regarded as cells, while the unstable 
manifolds of the motion are regarded as surfaces built with computer points, i.e., ceils. 
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total expansion rate and the total contraction rate, due to the Hamiltonian 
nature of the equations of motion). But in general the fraction of volume 
U falling into a volume element will be far different from the volume 
element fraction of the energy surface. 

One is thus led to the following unified "principle" to describe the 
stationary states of nonequilibrium systems. (41~ 

Principle. The average values of the observables in the stationary 
state describing the asymptotic behavior of systems like (4.1) are com- 
putable from a probability distribution on A which has a density with 
respect to the surface element of A. 2~ 

This principle can be more mathematically stated (a problem we 
refrain from entering here), and is due to Ruelle, t41J who based his work 
also on the results of Anosov, Sinai, and Bowen on the theory of a class 
of dynamical systems known as "hyperbolic systems" (which play in some 
sense, for nonequilibrium statistical mechanics, the role of the monocyclic 
systems of Helmholtz). The probability distributions selected by the above 
principle (which in "good cases" are unique) are called SRB measures. 14~ 

What is the predictive value of the above statements? In cases without 
external forces we have already mentioned that this principle leads to 
the microcanonical distribution and therefore implies classical thermo- 
dynamicsJ 6~ Life is made easy by the fact that although A may be very dif- 
ficult to identify, still the stationary distribution is just the microcanonical 
ensemble because A folds on the energy surface filling it up completely, 
with no gaps. 

In the dissipative cases it seems that we have little control on A and 
hence on the stationary distribution. 

Yet this might not be really so: we simply have to learn how to extract 
information from such an abstract principle. After all, it now seems natural 
that the Gibbs distribution predicts all the phenomena of equilibrium 
statistical mechanics (from the phase coexistence, to the critical point, to 
crystallization). But this was far from clear only a few decades ago, and 
many decades after the original formulations of Maxwell, Gibbs, and 
Boltzmann (as many of us certainly recall). 

That the principle might have predictive value is indicated by the first 
attempts as its use in problems of statistical mechanics; see ref. 18 (see also 
ref. 14), who were somewhat inspired by previous papers; see also ref. 27. 
In fact, only recently has the principle started being considered in the 

20 It is extremely important to think, to avoid trivial contradictions, that the cells on A must 
be regarded as much smaller than the surface elements of A that we consider in talking 
about the density. 
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theory of nonequilibrium, as it was developed originally by Ruelle mainly 
as an attempt at a theory of turbulent phenomena. This is not the appro- 
priate place to discuss ref. 18 in the perspective of the above principle: the 
discussion is rather delicate (as ref. 18 should be regarded as a pioneering 
work): see ref. ??. 

A simpler example of a quantitative (yet quite abstract) consequence 
of the above principle is the determination of the density function men- 
tioned in the principle: the latter is in fact essentially determined. If we are 
interested in stationary distributions, phenomena which are observable by 
measurements that take place in a fixed time z, we can just take averages 
over A with respect to a distribution with density over A proport ional  to 
A~: ~(x), with ~ ' =  M ' %  >> z [where the expansion rate is the Jacobian deter- 
minant  of the transformation St, at x, i.e., Ai:~(x)=I-[~ A~(S~oX)]. So 
two equal-area elements of A around x and y have a relative probability of 
visit equal to A~:~(x)/A~,l(y). 

Of course z' cannot be taken too large: if z' is taken of the order of 
the recurrence time, the ratio becomes 1. The natural upper bound on z' 
has to be such that the cells in U ending in the considered area elements 
are still large in number. This sets an upper limit to the values of z for 
which the above remark applies, z~ 

The example (4.1) is very special. 
It is, however, generalizable: many generalizations have already 

been considered in the literature. ~4~ Still, it should be stressed that the 
models to which the above principle can be applied form a rather small 
class of deterministic models. It is not immediately clear how it can be 
applied to stationary nonequilibrium phenomena in which the thermostat  
is realized in a different way, e.g., by some stochastic boundary  con- 
ditions. Nor  it is obvious that the different thermostats are physically 
equivalent. 

In my opinion there is also some misunderstanding in the literature 
about  the fact that the set A has zero measure (in the nonequilibrium cases 
this has been sometimes associated with questions related to irreversibility) 
and about  the fact that A, regarded as a folded surface on the equal-energy 
manifold, has a fractal dimension (thereby representing a "strange 
attractor"). Such facts may be quite misleading. The above analysis shows 
that A should 'be  more conveniently regarded as a smooth nonfractal sur- 
face of dimension 1 + ( 6 N -  2)/2 ~ 3N: its fractal dimension arises from the 

2~ This means that the ratio between the linear dimension of U and the linear dimension of 
the cells has to be large compared to the maximal linear expansion rate over the time 3, a 
condition that can be expressed in terms of the largest Lyapunov exponent. 
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folding of A on the surface of constant energy (rising from ,-~ 3N to about  
6N if E is small). 22 

Furthermore, in the assumption that the stochastic thermostats and 
the Gaussian thermostat  (or other thermostat  14~ are equivalent one sees 
clearly a problem related to attaching importance to the set A as a fractal 
with zero measure. In fact, we expect that stochastic thermostats lead to 
stationary distributions which have a density in phase space, and hence 
which cannot be concentrated on a set of zero measure. 

The contradiction disappears if one thinks that, in a stationary state, 
there may be several distributions which, in the limit as N ~  0% become 
equivalent. A distribution concentrated on a set of zero measure might well 
be equivalent to one distributed on the whole energy surface, or on the 
whole phase space, if N - ~  c~. A much simpler, but very familiar, example 
of such a situation is provided by the microcanonical distribution, which is 
concentrated on a set of zero measure, but it is equivalent (in the thermo- 
dynamic limit) to the canonical distribution, which is concentrated on the 
whole phase space. 

Finally it should be clear that the problem of approach to stationarity 
will show up exactly in the same terms as in the equilibrium cases. The 
"ergodicity" assumptions above cannot in any way justify the use of the 
distribution satisfying the Ruelle principle: the time necessary for a phase 
space point to visit the full set of cells building A will be of the order of 
magnitude of the recurrence time, and as in the equilibrium cases, we can 
expect that the rapidity of the approach to equilibrium is rather due to the 
fact that we are interested only in very few observables, and such observ- 
ables have the same value in most of phase space. 

I hope to have shown, or at least given arguments, that the point of 
view (see, e.g., ref. 38) according to which Boltzmann was a 19th century 
physicist judged by his interpreters with 20th century mathematical  
standards is not exactly correct: today's  way of thinking is not too different 
from his, and most  problems the physicists had with his work were 
problems with the understanding of his physics and n o t  of his mathematics 
(see also ref. 33). The misunderstandings about  his ideas are, in my 
opinion, largely due to unwillingness to study the original publications and 
to the unfounded belief that they were treated with fidelity by the reviewers 
who wrote about  his achievements. 

22 This is shown also by the fact that the operation i mapping x = (p, q) to ix = ( -p, q) is such 
that t~ ix ( - t )  is a solution of the equation of motion if t~x(t) is such: a time-reversal 
symmetry. This has several implications, including the properties that both initial data x 
and ix evolve toward the same attractor A in the future and to the attractor iA in the past. 
In general A and iA are different, except in the case E = 0 (because A is the full energy sur- 
face ). 
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Recently a new book  has appeared  in which von P la to  (39~ not  only 
develops the concepts he a l ready gave in ref. 38, but  also gives a very inter- 
esting discussion of the relat ion between Bol tzmann 's  and MaxweU's points  
of view as well as a detai led and documented  history of the ergodic 
hypothesis,  before and after Bol tzmann:  I am indebted to a referee for 
point ing this reference out  to me. The point  of view of von Plato,  discussed 
here with reference to ref. 38, is further developed. 
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